Received: March 22, 1982

THE PREPARATION AND PROPERTIES OF PERFLUOROn-HEPTYLBROMINE (V) TETRAFLUORIDE

M. H. HABIBI and L.C. SAMS

Department of Chemistry, The Texas Woman's University, Denton, Texas 76204 (U.S.A.)

SUMMARY

Reactions of $\underline{n}-C_7F_{15}Br$ with elemental fluorine at 0°C have produced perfluoro-<u>n</u>-heptylbromine(V) tetrafluoride $(\underline{n}-C_7F_{15}BrF_4)$. This derivative of BrF₅ was characterized by IR, 19F-NMR, mass spectroscopy and elemental analysis. The reactions of $\underline{n}-C_7F_{15}BrF_4$ with 1,2-dichlorohexafluorocyclopentene-1 ($C_5F_6Cl_2$) and 1,2-dichlorooctafluorocyclohexene-1 ($C_6F_8Cl_2$) were used to demonstrate in the fluorinating ability of $\underline{n}-C_7F_{15}BrF_4$.

INTRODUCTION

The syntheses of several perfluoroalkyliodine(V) tetrafluorides have been reported. These compounds were prepared by fluorination of perfluoroalkyl iodides with elemental fluorine [1,3], $ClF_3[2,3]$ and $BrF_3[3]$. The preparation of pentafluorophenylbromine(V) tetrafluoride has been reported [4].

RESULTS AND DISCUSSION

Preparation

Perfluoro-<u>n</u>-heptylbromine(V) tetrafluoride was synthesized by allowing <u>n</u>-C₇F₁₅Br and elemental fluorine to react in a Monel cylinder at 0°C for eighteen hours. The reaction

0022-1139/82/0000-0000/\$02.75

products were dissolved in $\underline{n}-C_6F_{14}$ and a colorless liquid was isolated from the reddish-brown solution by gas chromatography. It oxidized four equivalents of KI per mole.

$$\underline{\mathbf{n}} - \mathbf{C}_7 \mathbf{F}_{15} \mathbf{B} \mathbf{r} \mathbf{F}_4 + 4\mathbf{K} \mathbf{I} \longrightarrow \underline{\mathbf{n}} - \mathbf{C}_7 \mathbf{F}_{15} \mathbf{B} \mathbf{r} + 2\mathbf{I}_2 + 4 \mathbf{K} \mathbf{F}_7$$

Mass Spectrum

The mass spectrum, detailed in Table 1, consists of molecular ions at m/e 524 and 526 and expected fragment ions. The expected isotope pattern (1:1) for 79 Br and 81 Br was observed for fragments containing Br, and the peak at m/e 69 was assigned to CF₃⁺ as the base peak.

TABLE 1

Mass Spectrum

m/e	Relative Abundance	Ion	
526	3	[C ₇ BrF ₁₉] ⁺	
524	3	^{[C7BrF} 19] ⁺	
469	12	$\left[C_{7}BrF_{1}\right]^{+}$	
467	12	$\begin{bmatrix} C_7 BrF_{16} \end{bmatrix}^+ \\ \begin{bmatrix} C_7 BrF_{16} \end{bmatrix}^+ \end{bmatrix}$	
369	75	$[C_7F_{15}]^+$	
281	45	[C ₇ F ₁₅] ⁺ [C ₄ BrF ₈] ⁺	
279	43	[C4BrF8] ⁺	
169	80	[C ₃ F ₇] ⁺	
157	40	$[BrF_4]^+$	
155	38	$[BrF_4]^+$	
69	100	[CF ₃] ⁴	

NMR spectra

A comparison of the NMR spectra of $\underline{n}-C_7F_{15}Br$ and $\underline{n}-C_7F_{15}BrF_4$ is given in Table 2. The integration of the +140.2 ppm signal is consistent with four fluorines (relative to fluorines of the α -CF₂ group) in the same magnetic environment, similar to the equatorial fluorines of BrF₅. The R_F chemical shifts are as expected by comparison with perfluoro-<u>n</u>-heptyl bromide.

TABLE 2					
The ¹⁹ F-NMR spectra of <u>n</u> -C ₇ F ₁₅ Br and <u>n</u> -C ₇ F ₁₅ BrF ₄ $CF_{3}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-Br$ $\xi c \delta \gamma \beta \alpha$ $CF_{3}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-BrF_{4}$ $\xi c \delta \gamma \beta \alpha$					
Compound	Chemical Shifts (ppm) ^a Coupling Constant (Hz)				
	$\delta(CF_3) = \delta(CF_2) = \delta(BrF_4) = J(FBrCF) J(FBrCCF) Others$				
$\underline{n} - C_7 F_{15} Br$	$-81.3 -63.1(F_{\alpha})^{b}$				
	-126.7 F _β				
	-123.0 F _Y				
	-122.2 F _δ				
	-121.3 F _ε				
	-117.7 F _ξ				
<u>n</u> -C ₇ F ₁₅ BrF ₄	-82.8 -65.3 $(F_{\alpha})^{b}$ + 140.2 28 28 J $(CF_{\alpha}-CF_{3})$ 28				
	-127.5 F_{β}				
	-123.8 F _Y				
	-122.9 F ₈				
	-122.0 F _ε				
	-118.4 F _ξ				

 ${}^{a}{}_{From}$ CCl $_{3}F$ as internal reference, upfield is negative. ${}^{b}{}_{First}$ order spectra.

IR spectra

The liquid phase infrared spectrum consists of absorption bands at 1230(s), 1200(vs), 1147(s), 1115(m), 978(m), 820(w), 720(w), 700(m), 680(s), 648(m), 570(vs), and 530(m) cm⁻¹. This spectrum is comparable with that of other <u>n</u>-C₇F₁₅ groups [5] and the strong bands at 680 and 570 cm⁻¹ comparable to the 683 and 587 cm⁻¹ bands of bromine pentafluoride [6]. This spectrum is also comparable with the IR of $C_6F_5BrF_4[4]$.

Stability and hydrolysis

Perfluoro-<u>n</u>-heptylbromine(V) tetrafluoride decomposes slowly at room temperature, giving a mixture of <u>n</u>-C₇F₁₆, Br₂, and n-C₇F₁₅Br. It hydrolyzes and ¹⁹F-NMR analysis of the hydrolysis products showed the presence of <u>n</u>-C₇F₁₅Br and HF.

Reaction with $C_5F_6Cl_2$

When excess of 1,2-dichlorohexafluorocyclopentene-1 [7] $(C_5F_6Cl_2)$ was allowed to react with $\underline{n}-C_7F_{15}BrF_4$ in a Monel reactor at 120°C for 8 hours, NMR and mass spectra showed that 1,2-dichlorooactafluorocyclopentane $(C_5F_8Cl_2)$ and $\underline{n}-C_7F_{15}Br$ has been formed according to the equation:

 $\begin{array}{c} 2 \quad C_5F_6Cl_2 \ + \ \underline{n} - C_7F_{15}BrF_4 \longrightarrow 2C_5F_8Cl_2 \ + \ \underline{n} - C_7F_{15}Br \\ \end{array}$ The NMR data for $C_5F_6Cl_2$ and $C_5F_8Cl_2$ are given in Table 3.

TABLE 3 The Chemical Shifts of $C_5F_6Cl_2$ and $C_5F_8Cl_2$

Compound	Structure	19 F nucleus	Chemical Shifts*
C ₅ F ₆ Cl ₂	5 1 C1	3,5	-115.0
	4 F 2 3 C1	4	-131.0
C ₅ F ₈ C1 ₂	$4 \sqrt{\frac{5}{F}}_{2}^{1}_{C1}$	3,5-eq 3,5-ax 4-eq 4-ax 1,2-ax	-117.1 -124.0 -125.4 -126.7 -139.0

^{*}In ppm from CFCl₃ as internal references, upfield is negative.

Reaction with C6F8Cl2

Excess of 1,2-dichlorooctafluorocyclohexene-1 ($C_6F_8Cl_2$) was allowed to react with $\underline{n}-C_7F_{15}BrF_4$ in a Monel reactor at 140°C for eight hours. The product was isolated by GC. The NMR and mass spectra showed that 1,2-dichlorodecafluorocyclohexane ($C_6F_{10}Cl_2$) and $\underline{n}-C_7F_{15}Br$ had been formed. The NMR data for $C_6F_8Cl_2$ [8,9] and $C_6F_{10}Cl_2$ [10] are given in Table 4.

TABLE 4

Compound	Structure	¹⁹ F nucleus	Chemical Shifts*
C ₆ F ₈ Cl ₂	$5 \overbrace{F}{6 1}^{6} 1$ C1	3,31,6,61	-110.0
	4 r 2 cl.	4,41,5,51	-133.5
C ₆ F ₁₀ Cl ₂	$5 \underbrace{\overset{6}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}$	3,6-eq 3,6-ax 4,5-eq 4,5-ax 1,2-ax	-116.8 -120.5 -124.6 -128.2 -132.0

The Chemical Shifts of 19 F nuclei in $C_6F_8Cl_2$ and $C_6F_{10}Cl_2$

*In ppm from CFCl₂ as internal references, upfield is negative.

EXPERIMENTAL

Perfluoro-<u>n</u>-heptyl bromide was purchased from Columbia Organic Chemical Co., Inc., and the 19 F-NMR was observed and the product was used without further purification. Elemental fluorine was purchased from Air Products, Incorporated, and passed through a NaF trap before use.

The ¹⁹F-NMR spectra were obtained on a Varian Model EM-390 spectrometer operating at 84.67 MHz using CFCl₃ as an internal reference. The mass spectra were determined with a Consolidated Electrodynamics Corporation Model 21-104 mass spectrometer IR spectra were recorded with a Perkin-Elmer Model 225 infrared spectrophotometer using a 0.1 mm liquid cell fitted with polyethylene windows. Preparation of <u>n</u>-C₇F₁₅BrF₄

A vacuum manifold was used to condense 10 mmoles of perfluoro-<u>n</u>-heptyl bromide and 20 mmoles of elemental fluorine into a previously evacuated Monel reactor. The 0.304 liter Monel reactor was equipped with a Monel valve with "Teflon" packing.

At the completion of the reaction period, perfluoro-n-hexane was vacuum distilled into the reactor to dissolve the products. Dry helium gas was allowed to flow into the reactor and the products were transferred into a helium flushed sample holder through a septum. Moisture was rigorously excluded in all handling of the sample. The product, $C_7F_{15}BrF_4$ was isolated by trapping the appropriate peak from a Varian 90-P3 gas chromatograph equipped with a 3/8 inch x 20 foot column packed with 30% SE-30 on Chromosorb P. The column temperature was 100°C and the rate of helium flow was 65 ml/min. Analysis showed the product to be 38% $C_7F_{15}BrF_4$, 30% $C_7F_{15}Br$ and 32% unidentified. Anal. Calcd. for $C_7F_{15}BrF_4$: C, 16.0; F, 68.8; Br, 15.2. Found: C, 16.2; F, 68.6; Br, 14.8.

Reaction of $\underline{n}^{-C}_{7}F_{15}BrF_{4}$ with $C_{5}F_{6}Cl_{2}$

Excess $C_5F_6Cl_2$ (22 mmole) and $\underline{n}-C_7F_{15}BrF_4$ (10 mmole) were allowed to react in a previously evacuated cylinder at 120°C for eight hours. The NMR spectrum of the products showed the presence of 1,2-dichlorooctafluorocyclopentane ($C_5F_8Cl_2$), $\underline{n}-C_7F_{15}Br$ and unreacted $C_5F_6Cl_2$. The ¹⁹F-NMR of the GC separated products were consistent with the above results.

Reaction of \underline{n} -C₇F₁₅BrF₄ with C₆F₈Cl₂

The reaction of $\underline{n}-C_7F_{15}BrF_4$ (0.4 mmole) with excess of $C_6F_8Cl_2$ (10 mmole) were carried out in Monel reactor, at 140°C for eight hours. ¹⁹F-NMR spectra of products showed that 1,2-dichlorodecafluorocyclohexane ($C_6F_{10}Cl_2$), $n-C_7F_{15}Br$ and unreacted $C_6F_8Cl_2$ were present.

REFERENCES

- 1 D. Naumann, M. Schmeisser and L.J. Deneken, J. Inorg. Nucl. Chem., (1976) Supplement, 13.
- 2 G. Oates and J.M. Winfield, J. Chem. Soc., Dalton (1974) 119.
- 3 C.S. Rondestvedt, Jr., J. Am. Chem. Soc., 91 (1969) 3054.
- 4 J.A. Obaleye and L.C. Sams, Inorg. Nucl. Chem. Letters, <u>16</u> (1980) 343.
- 5 J.K. Brown and K.J. Morgan, Adv. Fluorine Chem., 4 (1965) 253
- 6 G.M. Begun and W.M. Fletcher, J. Chem. Phys., <u>42</u> (1965) 2236.
- 7 M.I. Bruce and P.W. Jolly, J. Chem. Soc. (a), (1966) 1602.
- 8 S.F. Campbell and A.C. Hudson, Spec. Acta, 23A (1967) 2119.
- 9 G.M. Birch and J.R. Van Wazer, J. Chem. Soc. (A), (1966) 586.
- 10 J.W. Emsley, Mol. Phys., 9 (1965) 381.